A Parliament of Earthlings
Metadata
- Author: Karen Bakker
- Full Title: A Parliament of Earthlings
- Category: articles
- Document Tags: #planet #tech
- URL: https://www.noemamag.com/a-parliament-of-all-earthlings
Highlights
- Whale Safe is the creation of scientists at UC Santa Barbara and is funded by Marc Benioff, who was apparently inspired to create Salesforce while swimming with dolphins off the coast of Hawaii. An AI-powered monitoring system, Whale Safe creates virtual whale lanes to enable safe passage for cetaceans and prevent ship strikes in near real-time.
The system incorporates four digital technologies: an underwater acoustic monitoring system that detects whale calls; AI algorithms that detect and identify blue, humpback or fin whales in near real time; oceanographic modeling combining satellite and digital buoy data with ocean circulation models and animal tags; whale sighting data reported by citizen scientists, mariners and whale-watchers using mobile apps; and locational data from ships’ automatic information systems (a mandatory global system of satellite tracking that enables precise monitoring of ships’ locations at all times). (View Highlight) - The output: a whale presence rating overlaid on a map, similar to a weather report, which is relayed in near real time to ship captains, who can decide to slow down or leave the area altogether. The Whale Safe team also tracks ships to see if they are complying with slow-speed zones and publishes public report cards tracking compliance, naming and shaming ships that fail to comply. (View Highlight)
- In an era of rapid global warming-induced changes in the world’s oceans, in which many marine species are becoming climate refugees, policymakers are now debating how we might apply these systems at the planetary scale. Near real-time, mobile and potentially spatially ubiquitous form of ocean governance relies on digital hardware that collects data from various sources (like nano-satellites, aerial and underwater drones, environmental sensor networks, digital bioacoustics and marine tags), combined with machine learning algorithms, computer vision and ecological informatics. (View Highlight)
- These digitally enabled ocean conservation schemes benefit humans as well as the whales. When ships slow down, they not only reduce whale strikes but also release fewer pollutants and emit less carbon dioxide. Moreover, whales’ nutrient-rich waste acts like a fertilizer for phytoplankton, which sequester enormous amounts of carbon. IMF economists have estimated the value of the ecosystem services provided by each individual whale (of the largest species) at over $2 million and called for a new global program of economic incentives to return whale populations to pre-industrial whaling levels as a “nature-based solution” to climate change. (View Highlight)
- Confronted with accelerating biodiversity loss, scientists and conservationists are adapting digital tools to achieve conservation goals. Digital environmental monitoring and decision-making platforms are operational on every continent, in every major biome on Earth. Repurposed cellphones, hidden high the tree canopy in tropical forests, are surveilling illegal loggers. Anti-terrorism software is being used to help predict and prevent poaching. Artificial intelligence algorithms use facial recognition to identify individual animals — from zebras to whale sharks — helping to track members of endangered species. (View Highlight)
- At some point in the past 24 hours, a flock of nano-satellites called Doves flew over your head; the first system able to image the entire surface of the Earth every day. Its developers — a team of ex-NASA engineers — are building a search engine for the entire surface of the planet that will operate in near-real time. One day soon, you will be able to search the surface of the Earth just like you search the web for images or text. Satellites are also being used to identify greenhouse gas emissions like methane; NGOs are publishing “name and shame” lists of the world’s biggest climate polluters. (View Highlight)
- a “Digital Earth,” monitored by systems of satellites and sensors that are increasingly instrumented, interconnected and intelligent. Digital Earth networks undertake a form of nested planetary computation, incorporating not only climate but also living beings, both biotic and abiotic elements of Gaia. (View Highlight)
- Digital Earth technologies have several implications for environmental governance. First, environmental data is becoming super-abundant rather than scarce. Second, environmental data is becoming ubiquitous: automated sensors, satellites and drones collect data continuously, even in remote places that humans find difficult to access, sensing and managing the environment everywhere, all the time. This creates time-space compression (governance is temporally and spatially ubiquitous) and time-space agility (governance is spatially and temporally dynamic). (View Highlight)
- Digital Earth also has the potential to be a multispecies affair, enrolling what Achille Mbembe refers to as “le vivant” (the living, enlivened, lively world) into planetary governance. Digital technologies may allow nonhumans to participate as active subjects in environmental management. Planetary computation, in other words, is not merely a set of tools for monitoring and manipulating the planet, but also a potential means of extending political voice to nonhumans, akin to what Isabelle Stengers terms “cosmopolitics.” (View Highlight)
- Planetary computation and planetary governance are thus not merely extensions of the old engineering mantra of “command and control.” Instead, they offer us a new paradigm: “communicate and cooperate,” which extends a form of voice to nonhumans, who become active subjects co-participating in environmental regulation, rather than passive objects. The environmental becomes inescapably political, but the political is not solely human. Digital Earth technologies offer the possibility of creating what Bruno Latour once called the “Parliament of Things”: a digitally-enabled Parliament of Earthlings. (View Highlight)
- Many species that scientists once thought to be mute or relatively vocally inactive actually make sound. To give just one example, researchers have recorded sounds made by over 50 fish and turtle species — once thought to be voiceless — making hundreds of different sounds, revealing complex coordination behaviors, evidence of parental care and a remarkable ability of embryos of at least one turtle species to time the moment of their collective birth through vocal communication. Peacocks emit loud, low infrasound during their mating dances. Elephants use similar frequencies to communicate across long distances, seemingly telepathically. (View Highlight)
- Elephants have specific signals for different threats such as honeybees and humans, and their vocalizations even distinguish between humans from different tribes; researchers are now building an elephant dictionary with thousands of sounds. (View Highlight)
- Digital listening is also revealing that interspecies communication is much more widespread than scientists previously understood. Moths can detect bat and even jam bat sonar. When buzzing bees approach flowers, the flowers flood themselves with nectar within minutes. Plants can detect the sound of specific insect predators and distinguish threatening from non-threatening insects with astonishing precision. Corn, tomato and tobacco plants emit high-pitched infrasound that we can’t hear, but insects likely can; in one experiment, researchers trained an AI algorithm on the distinct sounds emitted by healthy, dehydrated and wounded plants — and the algorithm was soon able to diagnose the plants’ condition, simply by listening. Although these ultrasounds are beyond human hearing range, we know that some insects can hear them. Could other creatures be listening to the plants and detecting their state of health? (View Highlight)
- Scientists are now advocating for similar systems to be created around the world. Some are proposing an ambitious agenda: a digitally enabled global network of Marine Protected Areas (MPAs) whose boundaries change position as endangered species migrate through the oceans, and which literally “follow the fish.” (View Highlight)
Relevant:
Science Is Making It Possible to ‘Hear’ Nature. It Does More Talking Than We Knew