Using Maps to See Beyond the Obvious — The Kit 1.0 Documentation
Metadata
- Author: kit.exposingtheinvisible.org
- Full Title: Using Maps to See Beyond the Obvious — The Kit 1.0 Documentation
- Category: articles
- Document Tags: #geospatial
- URL: https://kit.exposingtheinvisible.org/en/how/maps.html
Highlights
- Maps and satellite imagery do not only allow you to get an overview of an area but also help you make connections that would otherwise be difficult, if not impossible, to establish from ground level. You can see, for example, how a series of factories are arranged along the same railway or river, notice a pattern of illegal deforestation in a rainforest, identify the location and surroundings of an open pit mine, or assess environmental and infrastructural damage following a disaster. (View Highlight)
- Tags: fellowship
- Any data that can be referenced to a particular place can be added to a map. This includes natural features, such as rivers, coastlines and elevation; administrative data such as country outlines, county boundaries and city limits; aerial photographs, whether from satellites, drones, balloons or kites; and databases containing location information, such as the addresses of all the hospitals in a region, or a list of countries together with their population size. (View Highlight)
- Tags: fellowship
- Large amounts of such data can be found for free online, often already assembled into maps. An even greater amount of geographic information is available to you if you’re able to assemble these different datasets yourself, using accessible data visualisation and geographic information system (GIS) software. (View Highlight)
- Tags: fellowship
- It is also possible to generate your own geographic datasets and imagery, which you can then use to produce maps. You can create your own aerial imagery using drones, balloons or kites, and make or add to an existing map using basic survey techniques with simple tools such as a tape measure, paper and pen. (View Highlight)
- Tags: fellowship
- Geodata is basically defined as digital information that’s directly linked to a physical or geographic location. There is plenty of it freely available online, and often already visualised, so you may want to explore it and make use of it when researching certain topics or seeking data for your investigations. (View Highlight)
- Reference maps show important physical features such as rivers, hills and coastlines, as well as buildings, roads, paths etc., plus the names of places and streets, and are often useful for way-finding. (View Highlight)
- Common map platforms and apps***Google Maps***
In addition to the basic map and search function, Google Maps has a number of useful features for an investigation. It lets you plan routes thoroughly, look at detailed satellite imagery, track your own route and find photographs linked to a certain place.
The Street View function allows you to see ground-level 360-degree images and, for some locations, identify historical changes to a location, for example how new buildings have been added or demolished on a street or how green areas have been modified. Details on how to use this tool are outlined below, in the Google Street View section.
Google Earth (Pro)Note:
There are a number of versions of Google Earth, including the standard one which runs in the Chrome browser. In this chapter, we will be using the Pro version, which needs to be downloaded from the link above and installed on your computer.
Google Earth uses satellite imagery, rather than a reference map, as its background. It offers a number of features that Google Maps doesn’t, including historical satellite imagery and 3D models of terrain and buildings. The information shown on the map is organised into layers, which can be switched on and off so that you only see the information you need. Existing layers include: administrative boundaries (the outline of a country, region, county, etc.), roads and place names, as well as a few more specialist ones, such as US National Parks. It is also possible to add new layers to Google Earth.
Waze
Waze is a navigation and live traffic application that works for mobiles and tablets with GPS functions (Android and iOS). It was developed as a community driven mapping project between 2006-2009, and was bought by Google in 2013. However, it still operates its independent maps with real-time traffic information, travel times, map data (such as roads, landmarks and house numbers) and other data (such as traffic jams and live data about accidents) collected from its users.
Bing Maps
Bing Maps (owned by Microsoft) is a good alternative to Google Maps. It provides satellite view, bird eye’s view and road view, as well as street view (streetside) for some places. It is particularly strong on data about street traffic (use the traffic light icon on top of the map) and distance travel planning. Its maps are powered by HERE (developed and formerly owned by Nokia), postal data, traffick updates, route finding information, images and other data from other proprietary sources.
HERE WeGo
Built on the HERE technology that Bing Maps also uses (see above), HERE WeGo (owned by HERE Technologies) is another free map and navigation platform providing similar functions: satellite view, terrain view, route planning and traffic updates.
OpenStreetMap
OpenStreetMap (OSM) is a free map platform created through crowdsourcing (collaborative contributions from a large number of people and groups/organizations), and in this way it differs from the proprietary map resources above. This also means that you may need to verify any information you find on it by checking other maps and confirming geodata about the places you need to investigate. OSM is not entirely completed for some parts of the world, but it is generally considered reliable, and many other map applications, such as Mapbox or Ushahidi, use its data. In some instances, there may be more information available in OSM than in other maps.
OSM has several specialist layers, which can be accessed via the icons on the right of the screen – cycling routes, for instance. It also has a humanitarian layer, which shows details like the location of camps for displaced people, and is used by the humanitarian community for planning and coordinating responses. If this information is relevant to your work, OSM is a good starting point.
Example: Community map-making in OpenStreetMapIn 2009, OpenStreetMap was used by an a group of young Kenyans to make the first ever map of Kibera, a neighbourhood of the country’s capital, Nairobi. Until then, Kibera had been a literal blank spot on maps of Nairobi and even its inhabitants had only limited information about where to find an open pharmacy, a health point for emergencies or a clean water source nearby. A local residents’ initiative changed all that with the Map Kibera project http://mapkibera.org/, which collaborates with the community to create a reliable and ever-growing digital map of the neighbourhood. The concept is now expanding to cover other marginalized communities left out from maps.
OsmAnd
Another viable open source alternative to Google and Microsoft owned platforms, OsmAnd uses OpenStreetMap’s database but is independent from OSM. It provides satellite view from Bing. Its mobile app (for Android and iOS) works completely offline and in addition to route planning and navigation, it also includes foot, hiking, and bike paths. It can be particularly useful if you need to map terrains that are off-road.
Open CPN
Open CPN (Open Chart Plotter Navigator) is free and open source software developed by a team of active sailors with the aim to improve the mapping of waters. It is constantly updated and tested by users and provides navigation and route planning support as well as data about weather conditions and tides, tracking of other vessels, avoidance of possible collisions, and much more. If your investigations or journeys happen on water, this may be a good platform use, and you can follow installation and user guides on Open CPN’s quick start page: https://opencpn.org/OpenCPN/info/quickstart.html. It requires installation and is available for Linux, Mac, Windows and Raspberry Pi devices.
Yandex Maps
Yandex Maps is a Russian web mapping service available worldwide but with more limited coverage than Google Maps overall. It has detailed maps only for Russia, Belarus, Ukraine, Turkey and Kazakhstan but it is worth checking in comparison with other map platforms because it may provide additional details, especially in these regions.
Baidu Maps
Owned by Chinese company Baidu, Baidu Maps is particularly useful when checking locations in China, as it provides far more detailed coverage than Google Maps. It includes satellite imagery, street maps, street view, and route planners for foot, car, or public transportation travel. Also, if you are traveling or working in China, you will not be able to use Google Maps, as all Google services are currently blocked by the government, so Baidu might be your primary resource. It works both on mobile and desktop.
CartoDB
Carto advertises itself as the worlds leading location intelligence platform. They offer web mapping, GIS, spatial data, and other features. They offer various tools that are easy to use and web accessible. However the service is priced at $200/month a the time of this article. There are free options for students who should look for CartoBuilder and the Github Student Developer pack. They also offer discounts and grants to educators, startups, and nonprofits. They also offer free Carto Basemaps. Carto is known for its support of SQL databases and a strong visualization component.
Mapbox
Mapbox can plot data points on a custom designed map tile, allow you to tell stories with your data. The free tier allows you to use the product for many impressions. Capable of creating symbol, heatmap, and choropleth maps.
TileMill
Tilemill is an open source map design studi (View Highlight) - Datawrapper allows you to make choropleth and symbol maps. It has a wide range of base maps and you can also upload your own if you can’t find what you’re looking for. You can leave your maps unpublished (and therefore private) if you stop at the “visualise” step of producing your map. The map will then be available under ‘my charts’ in the top right menu. Once you publish your maps, they can be viewed up to 10,000 times before you will be asked to pay for the software. Datawrapper also has many other data visualisation tools to help you analyse (and later communicate) your data, including templates for bar charts, scatter plots, area diagram, pie charts and tables. This is an online tool, so you will need an internet connection to use it. (View Highlight)
- Geographic data (or geodata) and related imagery come in a number of different file formats, which may be confusing for a beginner. You will be facing a lot of these when working with reference maps, or any other type of maps, for that matter. (View Highlight)
- Tags: fellowship
- Georeferenced vector data formats
Vector data is geographic data which is stored as a series of points, lines and polygons. Examples include roads, buildings and country outlines. (View Highlight)- Tags: fellowship
- KML/KMZ files
KML (Keyhole Markup Language) is the main format used in Google Earth to store points, lines and polygons but it can be opened in most other map-making applications. These files contain geometric information (points, lines, polygons, etc.), plus a small amount of text (e.g. place names).
In Google Earth, files in this format can be opened via the File menu on your computer: File > Open and then select the relevant file.
KMZ files are compressed KML files. A free tool to convert Excel files to Google Earth KML can be found here. (View Highlight)- Tags: fellowship
- SHP (shapefiles)
This is one of the most common map file formats and is used by a wide range of map-making applications. It can store geometric information, together with a detailed database that describes a given point, line or polygon. For example, a shapefile might contain the outline of a country and a detailed database of information about that country, such as its name, population, etc.
A shapefile is in fact a collection of files (shp, shx and dbf are the essential ones that need to be present for the file to be usable). When shapefiles are available, for example from a government website that holds cadaster (i.e. land records) information, they are typically downloaded together as a .zip file (an archive that stores compressed files). It is common to simply import this entire .zip file into mapping applications. If you do expand the .zip file, the separate files that make up the shapefile must still be kept in the same folder for it to work.
In Google Earth, SHP files can be imported via the File menu on your computer: File > Import and then select the relevant file. (View Highlight)- Tags: fellowship
- CSV files
CSV is short for “comma separated values” (also .csv). This is a simple database format that can be opened in most spreadsheet and database applications and imported into many map-making applications. In order to place this data on a map, it must contain location information, such as latitude and longitude coordinates or addresses. (View Highlight)- Tags: fellowship
- Sometimes multiple pieces of information are all referenced to the same latitude and longitude coordinates, which implies that a series of events or things are all located in the exact same place (even if they are not). Multiple entries with the exact same geographical coordinates can also be an indication of how or where that information was logged into the database, and does not necessarily reflect where an event actually happened. For instance, this issue can be seen in the Missing Migrants database from IOM where a large number of individual entries to the database (each entry refers to an incident resulting in a number of people dead or missing) are referenced to the exact same point. This is unlikely to mean that everyone died or disappeared at precisely the same location, so the location recorded may instead be that of the police station where all those deaths and disappearances were reported. (View Highlight)
- Tags: fellowship
- Image formats for aerial imagery and raster maps
Some of the data that you want to add to your map may be in a raster image format. This might include detailed aerial photographs taken with drones or kites, digital images of paper maps that you want to add to your digital map or data that is typically only provided as a raster file, such as land use and elevation maps. (View Highlight) - JPEG
JPEG is a common format for raster images. You’ll often find photographs, satellite imagery and digital scans of maps in this format. (View Highlight) - TIFF
GeoTIFF is an image format that contains georeferencing information. That means that it can be uploaded directly to mapping platforms and will appear in the correct place on the map, without needing to be placed manually. The information on the scale of the image (the area it covers) and the location is often stored in an accompanying .tfw file, which should always be kept in the same folder. (View Highlight)
New highlights added April 14, 2024 at 9:20 AM
- Common technical drawing formats
DWG (drawing) and DXF (Drawing eXchange Format) are common formats present in technical drawing software used by architects, graphic designers and engineers. They contain geometric information (points, lines, polygons) and are not always georeferenced. They can be imported into (and exported from) many map-making applications. (View Highlight)- Tags: fellowship
- Geoconverter converts a number of data formats commonly used when making maps. (View Highlight)
- Safety First! Politically Sensitive borders and region names. Be aware that some borders displayed in your map may be politically sensitive or contested. Also some regions may have different names associated with them that may be politically charged. When rendering your own map data or when using historical data you may come across this. Collaborating with those familiar with the region can quickly help point these out. (View Highlight)
- Tags: fellowship
- Understanding location coordinates
The latitude and longitude (also known as lat-long) coordinates system divides the earth into a grid of horizontal and vertical lines and is used to accurately pinpoint any location.
Latitude measures how far a place is north or south of the equator. The equator is 0^o^ latitude, with the north pole at 90^o^ N and the south pole at 90^o^ south.
Longitude measures how far a place is east or west of the prime meridian, which is at 0^o^ longitude. 180^o^ east and 180^o^ west would represent the same point, on the opposite side of the globe from the prime meridian.
Latitude and longitude coordinates can be written in a number of formats:
• Degrees / minutes: 52°31.86797’ N, 013°24.03009’ W
• Degrees / minutes / seconds: 52°31’52.0784” N, 013°24’01.8054” W
• Decimal: 52.5311329 lat, -13.4005015 long. North of equator is positive (plus is usually not marked), south negative (marked with a “-”). East of the prime meridian is positive, west is negative.
Example of latitude and longitude of a place in Google Maps.Note:
Some software requires latitude and longitude data to be supplied in a particular format. The formats can be converted using simple web applications such as Earthpoint.
To convert between decimal degrees and degrees/minutes (DM) or degrees/minutes/seconds (DMS) you can also use online calculators such as latlong.net or Calculator Soup among many others. Google Maps also converts and shows these coordinates automatically as you search. (View Highlight)
- Tags: fellowship
- Safety First! Sharing your location in real time
A number of common apps, including Google Maps and WhatsApp, allow you to share your real-time location with specific people for a limited period of time. This feature could potentially be helpful in terms of allowing a colleague to monitor where you are during an investigation as a safety measure. On the other hand, sharing your location in real time can put you at risk during an investigation, if others who are interested in your whereabouts are able to access the data you share. Only share your location with those you trust. When researching sensitive topics, or if you suspect that you might be under surveillance, you should avoid sharing or storing your location without using encryption. (View Highlight) - Data security also needs to be taken into account – you may not want to give your apps, your operating system and your mobile service provider access to your location over the course of your investigation. (View Highlight)
- Carrying out a survey of a small area – the low tech way
Carrying out a detailed survey of a place can be useful for some investigations. It can help you create an accurate record of earthquake damage to one or more buildings, for example, or document the location of bullet holes following a shooting. This approach is low-tech, but that doesn’t mean it should be regarded as an inferior or amateur technique: many professionals, including architects and engineers, use it to gain the most accurate measurements.
What you need: pen and paper, measuring tape.
To practice, do a survey of a nearby place that you have easy, legal access to; the garden or courtyard of your home or office could work.
Sketch out the area in “plan” (in 2D - viewed as flat, from above). Using your tape measure, take measurements of the elements you have drawn on your plan – for instance, the lengths of walls and staircases, and the distance between them. Remember to measure diagonals in the space, so that you can draw it more accurately later – this will help you ascertain whether a courtyard that looks like a rectangle really does have parallel sides, for example.
Take note of the orientation by marking which way is north. You may be able to look at an existing, less detailed map to work this out. Looking at the position of the the sun and time of day can also be a good guide. Or, of course, you could use a compass.
It is also helpful to take photographs of the area you are surveying. These will be useful when it comes to drawing up your survey measurements, as they give a wider sense of what the place is like. To get a full overview, take panoramic shots, ideally from different places on and around the site. To build a bigger picture of the place, try to take photographs that contain as much context as possible – surrounding streets, adjacent buildings, etc. Close-up photographs of key features, such as damage to a window or graffiti on one of the walls, are also useful. (View Highlight) - Carrying out a survey of a larger area
If the area you need to map is bigger – for example, the outline of a new forest clearing, where you suspect trees have been illegally logged – it is a good idea to use a GPS device, such as your phone or one of the other tools mentioned above.
Take latitude-longitude coordinates at each corner of the area you want to map; this will allow you to draw the outline in your map software later. Placing these points on the map and drawing a polygon to join them (see previous section on drawing) will give you an outline that you can compare with other data on the map. For example, does the area you have drawn overlap with a national park, confirming your suspicion that the trees were logged illegally? It will also allow you to measure the area and, in turn, estimate how many trees have been cut. (View Highlight) - Wikimapia is an open source map platform that is useful for satellite imagery analysis because it incorporates imagery from a number of providers (including Google, Bing and Yahoo) and allows you to switch between them (by using the black “Wikimapia Map” button on the upper right side of the map). This can be handy when features are obscured by one provider, as you can quickly switch between sets of images to see how the same place appears elsewhere. Wikimapia provides plenty of information and guides about working with geographic data on its platform as well as advice for beginners. (View Highlight)
- Adding geo-referenced images to your map
Some image files, such as .geoTIFFs, have geo-referencing information (latitude-longitude coordinates) attached. This allows you to import them into your maps using GIS software such as QGIS, which will automatically place them at the correct location and distort them to match your map’s projection. (View Highlight) - The process of positioning satellite or aerial images in the relevant geographic space of a map is called georectification.
Mapknitter is a free, open source tool for georectification. After placing your images, you can export them as GeoTIFFs for easy incorporation into other maps. (View Highlight)- Tags: fellowship
- Adding non geo-referenced images to your map
It is also possible to add aerial images or other maps that are not geo-referenced (do not have latitude-longitude coordinates embedded in the file) to an existing map. You can add scans of paper maps showing historical land use or detailed drawings of infrastructure to your digital map and cross-reference that information with other geographic data. You can then draw the features shown on the paper map to create a vector version, with geographic data - such as roads, buildings and country outlines - stored as a series of points, lines and polygons. (View Highlight)- Tags: fellowship
- Pattern, shape and texture
Patterns, shapes and textures can also help to identify features.• Pattern - agricultural areas can often be identified by the pattern of farmers fields, which may be rigidly rectangular, or, in countries that use rotating booms for irrigation, circular. Natural growth forest has a more irregular pattern of trees than a plantation, which may be laid out in a grid.
• Shape - bodies of water, such as lakes and rivers, tend to have distinctive shapes and are often easy to identify. Straight lines in a landscape are likely to be human-made – think roads, canals and land boundaries.
• Texture - referring to how smooth or rough a feature is. Texture can give you clues about what you’re looking at, for example a large area of concrete or tarmac, such as a car park, will appear smooth, while vegetation is likely to have a rougher appearance.
(View Highlight)- Tags: fellowship
- Tone and colour
Tone and colour are really important when interpreting images.
Satellite images created using visible light (as opposed to infrared light, for example, which is also used to capture satellite images) are fairly intuitive to interpret, as the colours are similar to what you would see with your own eyes. Vegetation tends to be green, for example (though this can change over the course of the year, so it is helpful to know when a satellite image was taken). Water absorbs light and tends to appear black or dark blue, although sediment in the water will make it look brown; shallow water can be lighter in colour and sunlight reflections can make it seem white or grey.
Infrared images are often used to monitor vegetation, which will appear in different shades of red (rather than green, as in visible light images). (View Highlight)- Tags: fellowship
- Height, depth and shadow
Shadows can help determine the height or depth of an object that has been photographed from above and can also indicate the time and date that an image was taken. See the section below on shadow analysis for more details. (View Highlight)- Tags: fellowship
- Hypothetical Case: Investigating forest clearings with the help of satellite images
Maps and satellite analysis can be extremely useful for tracking supply chains and following products from their origin to the point at which they reach consumers.
This example helps to illustrate what is possible to do with maps and satellite data as part of an investigation. The techniques mentioned here should complement and be complemented by several other investigative techniques, to confirm and build upon the evidence gathered. (See the Supply Chain chapter of this Kit for additional tools and techniques.) (View Highlight)- Tags: fellowship
- Shadow analysis
This section looks at shadows in satellite imagery only.
Looking at the shadows in satellite images can help you work out the height of features and the time and date that the image was taken. The direction (azimuth) of the sun in the sky and its height (altitude) change over the course of the day. The sun rises in the east, sets in the west and is at its highest point in the sky around noon; its path also changes over the course of the year. The sun’s changing height and direction mean that objects’ shadows will change in direction and length at different times of the day and year. These changing shadows can be used to estimate the time of day and the time of year an image was taken. Conversely, if you know when an image was taken, you can use that information to analyse shadows and calculate the height of objects in an image. (View Highlight) - Large scale land use maps
Large scale maps that show land use (forest, farmland, urban, etc.) are available from a number of sources. (View Highlight)
New highlights added April 14, 2024 at 2:00 PM
- Glossary
Administrative boundary - the boundary of a country, region, municipality, etc.
Aerial imagery - photographs of the Earth’s surface taken from manned or unmanned flying objects such as airplanes, balloons, kites, helicopters, drones etc.
Aerial imagery - photographs of the Earth’s surface taken from manned or unmanned flying objects such as airplanes, balloons, kites, helicopters, drones etc.
Database - a system used to store and organize collections of data with a particular focus or purpose. For example, a database of land and property ownership in country Z.
Database - a system used to store and organize collections of data with a particular focus or purpose. For example, a database of land and property ownership in country Z.
Dataset – a collection of data sharing some common attributes and that is usually organized in rows and columns (tables) for easier processing. For example, a dataset of the foreign owners of land and properties in country Z.
Dataset – a collection of data sharing some common attributes and that is usually organized in rows and columns (tables) for easier processing. For example, a dataset of the foreign owners of land and properties in country Z.
Choropleth - a map where the different regions are coloured to show a differences, for example, in voting percentages, or life expectancy etc
Geocoding - the process of converting location data, such as a street address, into precise latitude and longitude coordinates.
Geodata – information about geographic locations, usually stored in digital format.
Geodata – information about geographic locations, usually stored in digital format.
Geographic information - information about where something is located or where something happened on the Earth’s surface.
Geographic information - information about where something is located or where something happened on the Earth’s surface.
Geographic information system (GIS) – a system or software used to collect, store, process, analyse, interpret and represent geographic information.
Geographic information system (GIS) – a system or software used to collect, store, process, analyse, interpret and represent geographic information.
Geolocation - finding the real world location of an object, such as the place that a photograph was taken.
Geolocation - finding the real world location of an object, such as the place that a photograph was taken.
Geographic reference (geo reference) - location data, such as a street address, that is converted into precise latitude and longitude coordinates for easier placement/view on a map.
Geographic reference (geo reference) - location data, such as a street address, that is converted into precise latitude and longitude coordinates for easier placement/view on a map.
Geo-referenced database - a database whose information is linked to specific location.
Georectification - the process of positioning images in geographic space on a map. You might do this with older aerial photographs that you found at the local library, scanned and now want to add to a map. They need to be positioned accurately and potentially skewed, in order to match the map projection.
Global Positioning System (GPS) - a US system of navigational satellites that allow users to determine their position on earth.
Global Positioning System (GPS) - a US system of navigational satellites that allow users to determine their position on earth.
Heat maps - maps that show changing intensity, such as how air pollution differs across a city
Internet Protocol (IP) address – a set of numbers used to identify a computer or data location you are connecting to. Example: 213.108.108.217
Internet Protocol (IP) address – a set of numbers used to identify a computer or data location you are connecting to. Example: 213.108.108.217
Land cover (data, maps) – a way of classifying maps and satellite imagery data based on what covers the Earth’s surface: grass, trees, water, buildings, crops etc.
Land cover (data, maps) – a way of classifying maps and satellite imagery data based on what covers the Earth’s surface: grass, trees, water, buildings, crops etc.
Land use (data, maps) – a way of classifying maps and satellite imagery data based on how people use the land on the Earth’s surface: for agriculture, transport, recreation, residential, conservation (national parks, forests) and other purposes.
Land use (data, maps) – a way of classifying maps and satellite imagery data based on how people use the land on the Earth’s surface: for agriculture, transport, recreation, residential, conservation (national parks, forests) and other purposes.
Latitude – coordinate that measures how far a place is north or south of the Equator. The equator is 0° latitude, with the North Pole at 90° N and the South Pole at 90° south.
Latitude – coordinate that measures how far a place is north or south of the Equator. The equator is 0° latitude, with the North Pole at 90° N and the South Pole at 90° south.
Location metadata (in a photo/video) - latitude-longitude coordinates showing where a photo was taken. This metadata can be viewed by opening the image’s properties (right-click on the file in Explorer to bring up the menu. ‘Properties’ is at the bottom.)
Longitude – geographic coordinate that measures how far east or west from the prime meridian a point is, up to 180°.
Map – a graphic representation of physical areas or objects and where they are located geographically.
Map – a graphic representation of physical areas or objects and where they are located geographically.
Map coordinates - latitude and longitude of a point on a map, read as a series of numbers or symbols and calculated based on a grid of horizontal and vertical lines that can be used to accurately locate points on earth.
Metadata - information that describes properties of a file, be it image, document, sound recording, map etc. For example the contents of an image are the visible elements in it, while the date the image was taken, the location and device it was taken on, are called metadata.
Metadata - information that describes properties of a file, be it image, document, sound recording, map etc. For example the contents of an image are the visible elements in it, while the date the image was taken, the location and device it was taken on, are called metadata.
Physical maps - maps showing physical features such as rivers, hills, coastlines, as well as buildings, roads, paths, etc., plus the names of places and streets.
Polygon – a two dimensional shape formed by drawing straight lines, such as a triangle, pentagon, hexagon. In mapping, a polygon is used to delimit an area meant to be represented in more detail on a map.
Polygon – a two dimensional shape formed by drawing straight lines, such as a triangle, pentagon, hexagon. In mapping, a polygon is used to delimit an area meant to be represented in more detail on a map.
Projection - a way to represent a 3D globe on a flat surface. There are many different ways to do this, all of which involve distortion of shape, area, distance or direction.
Raster images - images created from grids of pixels. Common data formats are jpeg and tiff.
Raster images - images created from grids of pixels. Common data formats are jpeg and tiff.
Raster data - some geographic data is commonly stored as raster images. Examples include elevation data and land use data.
Raster data - some geographic data is commonly stored as raster images. Examples include elevation data and land use data.
Reference map – maps that show important physical features such as rivers, hills and coastlines, as well as buildings, roads, paths etc., plus the names of places and streets, and are often useful for way-finding.
Reference map – maps that show important physical features such as rivers, hills and coastlines, as well as buildings, roads, paths etc., plus the names of places and streets, and are often useful for way-finding.
Rendering - an image ren (View Highlight)